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Introduction to Deep Learning

Deep Learning refers to Supervised Learning using an 
Artificial Neural Network, which has the following features:
o It is a network/graph of small computation units called 

artificial neurons, loosely modeled on the neurons in our 
brains, which send signals to each other.  The signals are 
floating-point numbers. 

o The network is typically organized in layers: the first layer 
is the input layer, the last is the output layer, and others are 
called hidden layers. 

o A shallow network might have as few as 3 layers, and there 
is no theoretical limit to how many layers, or how wide the 
layers are.

o Generally, networks are very wide (many neurons in a 
layer) but not very deep.  



Introduction to Deep Learning
Features of artificial neural networks:

o The input layer takes an array/vector of floats, and the 
output layer produces an array of floats (sometimes just 
a single float or just 0/1). Thus, the network computes a 
function from vectors to vectors. 

o In a feedforward network, each neuron in a hidden layer 
receives signals from all the neurons in the previous 
layer, computes a single floating-point number, which is 
sent to all the neurons in the next layer. 

o The neuron processes its inputs using a non-linear 
function (typically, logistic regression), using a 
threshold function which determines the value of the 
output signal (typically in the range [0..1]). 

o Each input to a neuron has a floating-point weight
which determines the strength of the signal (importance 
of this float to the neuron). 

o When a network is trained, it learns what weights are 
necessary to produce the required output. 
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Features of artificial neural networks:

o Additional layers may perform data 
aggregation (e.g., convolution and 
pooling) or other kinds of data 
manipulation (e.g., softmax = 
transforming the output into a 
probability distribution).

o In a feedforward network, the network 
transforms an array of floats through 
the layers into another array of floats; 
in a sequence model, the inputs and 
outputs are sequences of vectors; and 
recurrent layers have cyclical 
connections which act as memory. 

o BERT, GPT, and other large networks 
learn to pay Attention to complex 
patterns in the input sequence (e.g., 
words in a sentence). 
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Deep background:  Linear Regression



Digression:  Linear Regression

Linear Regression relates some number of independent variables

X1,  X2,  ...,  Xn

with a dependent or response variable Y. All are assumed to be real 
numbers. The values of Y form a trend line (= linear) showing the linear 
relationship of the input variables.  
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Digression:  Linear Regression

There is a very simple formula from linear algebra which can be 
used to calculate the output line Y:
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In linear regression, we define the error of the prediction as the 
MSE (mean square error) of the predictions:

and we have explicit formulae for finding the 
parameters for the slope and y-intercept of the regression line 
which minimizes the MSE:

Linear Regression: What is the “cost function”?

But what if we didn’t 
have such an explicit 
formula?
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But linear regression doesn't work for many problems!  Suppose we 
attempt to classify 16 people as male or female depending on a single 
feature: their height. Men in general are taller than women (the average 
height of an American man is 5’ 9” and for women 5’ 4”), 
X = height  against  Y = gender (1 for male, 0 for female):

Logistic Regression: A Motivating Example

Male:

Female:
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If we plug this into the linear regression algorithm, we get the 
following:

Logistic Regression: Motivating Example

There are many issues with this:

How can we use this to predict 
someone’s gender from their height?

How to give the probability of their 
gender?

There is clearly no linear trend, so what 
does the line even mean?
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In order to solve this, we will transform the scale of Y into a new 
domain, in this case into the real interval [0..1] used for 
probabilities.  This is called the Logit Transformation, and is 
based on the notion of a sigmoid function                         of the form 

Notice that:

Logistic Regression: The Logit Transformation
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The punchline here is that we will transform the regression line into a 
sigmoid, and use it to give us the probability that a given individual is male, 
and then define as a decision boundary a threshold (typically 0.5) by which 
we will decide if the binary output class is 1 or 0:

But in fact it is not that simple, because the least squares technique does not 
work
any more, and we will have to recast the regression framework around the 
sigmoid function.....

Logistic Regression: The Logit Transformation
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Caveat: Such 
decision boundaries 
are typically not 
used in neural 
networks, so the 
output is between 0 
and 1. 



In linear regression, we define the error of the prediction as the 
MSE (mean square error) of the predictions:

and we have explicit formulae for finding the 
parameters for the slope and y-intercept of the regression line 
which minimizes the MSE:

Linear Regression: What is the “cost function”?

But what if we didn’t 
have such an explicit 
formula?
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But what if we didn’t?   If there is no analytical solution (a formula), 

then we must define the error explicitly using a cost function, and 

then use a search algorithm called Gradient Descent to find the 

values for W which minimize this error. 

Linear Regression Concluded: Gradient Descent to find weights W
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Gradient Descent is an iterative approximation algorithm, which 
"tweaks" the weights in W to move in the direction of smaller 
errors/lower “cost.” 

Linear Regression Concluded: Gradient Descent to find W

Hyperparameters: 
• 𝜆 = learning rate   

(how far to 
jump!)

• termination 
criterion
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Each neuron in a neural network is implemented as a logistic regression algorithm, 
with an additional input called the bias (to scale the inputs). 



17

Thus:

One possible activation function f is the sigmoid which is 
typical in logistic regression:

2 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

7.1 Units

The building block of a neural network is a single computational unit. A unit takes
a set of real valued numbers as input, performs some computation on them, and
produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-
tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term
a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be
represented as:

z = b+
X

i

wixi (7.1)

Often it’s more convenient to express this weighted sum using vector notation; recall
from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector
we’ll talk about z in terms of a weight vector w, a scalar bias b, and an input vector
x, and we’ll replace the sum with the convenient dot product:

z = w · x+b (7.2)

As defined in Eq. 7.2, z is just a real valued number.
Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as
the activation value for the unit, a. Since we are just modeling a single unit, theactivation
activation for the node is in fact the final output of the network, which we’ll generally
call y. So the value y is defined as:

y = a = f (z)

We’ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,
and the rectified linear ReLU) but it’s pedagogically convenient to start with the
sigmoid function since we saw it in Chapter 5:sigmoid

y = s(z) =
1

1+ e�z (7.3)

The sigmoid (shown in Fig. 7.1) has a number of advantages; it maps the output
into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s
differentiable, which as we saw in Section ?? will be handy for learning.

Figure 7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is
nearly linear around 0 but outlier values get squashed toward 0 or 1.
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Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.
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Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:

y = max(x,0) (7.6)
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But Non-Linear Activation Functions besides sigmoid are often used!
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tanh ReLU
Rectified Linear Unit
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Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = s(w · x+b) =
1

1+ exp(�(w · x+b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.
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In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
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when x is positive, and 0 otherwise:

y = max(x,0) (7.6)
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Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:
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Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]
b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w · x+b) =
1

1+ e�(w·x+b) =
1

1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5) =
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = max(z,0) (7.6)

Most Common:
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§ Suppose a unit has:
§ w = [0.2,0.3,0.9] 
§ b = 0.5 
§ What happens with input x:
§ x = [0.5,0.6,0.1] 
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In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:
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The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU
when x is positive, and 0 otherwise:
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When the output is a vector, a generalization of the sigmoid function, 
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Softmax = a generalization of sigmoid which scales k numbers into a 
probability distribution.

§ For a vector z of dimensionality k, the softmax is:

§ Example:

5.6 • MULTINOMIAL LOGISTIC REGRESSION 15

distributed according to a Gaussian distribution with mean µ = 0. In a Gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance s ). By using a Gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A Gaussian for a weight q j is

1q
2ps2

j

exp

 
�
(q j �µ j)2

2s2
j

!
(5.27)

If we multiply each weight by a Gaussian prior on the weight, we are thus maximiz-
ing the following constraint:

q̂ = argmax
q

MY

i=1

P(y(i)|x(i))⇥
nY

j=1

1q
2ps2

j

exp

 
�
(q j �µ j)2

2s2
j

!
(5.28)

which in log space, with µ = 0, and assuming 2s2 = 1, corresponds to

q̂ = argmax
q

mX

i=1

logP(y(i)|x(i))�a
nX

j=1

q 2
j (5.29)

which is in the same form as Eq. 5.24.

5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be assigning
some of the labels we will introduce in Chapter 8, like the part of speech of a word
(choosing from 10, 30, or even 50 different parts of speech), or the named entity
type of a phrase (choosing from tags like person, location, organization).

In such cases we use multinomial logistic regression, also called softmax re-
multinomial

logistic
regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c 2C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax
takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
exp(zi)Pk
j=1 exp(z j)

1  i  k (5.30)

The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:

softmax(z) =

"
exp(z1)Pk
i=1 exp(zi)

,
exp(z2)Pk
i=1 exp(zi)

, ...,
exp(zk)Pk
i=1 exp(zi)
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The denominator
Pk

i=1 exp(zi) is used to normalize all the values into probabil-
ities. Thus for example given a vector:

z = [0.6,1.1,�1.5,1.2,3.2,�1.1]

the resulting (rounded) softmax(z) is

[0.055,0.090,0.006,0.099,0.74,0.010]

Again like the sigmoid, the input to the softmax will be the dot product between
a weight vector w and an input vector x (plus a bias). But now we’ll need separate
weight vectors (and bias) for each of the K classes.

p(y = c|x) =
exp(wc · x+bc)

kX

j=1

exp(w j · x+b j)

(5.32)

Like the sigmoid, the softmax has the property of squashing values toward 0 or 1.
Thus if one of the inputs is larger than the others, it will tend to push its probability
toward 1, and suppress the probabilities of the smaller inputs.

5.6.1 Features in Multinomial Logistic Regression
Features in multinomial logistic regression function similarly to binary logistic re-
gression, with one difference that we’ll need separate weight vectors (and biases) for
each of the K classes. Recall our binary exclamation point feature x5 from page 4:

x5 =

⇢
1 if “!” 2 doc
0 otherwise

In binary classification a positive weight w5 on a feature influences the classifier
toward y = 1 (positive sentiment) and a negative weight influences it toward y = 0
(negative sentiment) with the absolute value indicating how important the feature
is. For multinominal logistic regression, by contrast, with separate weights for each
class, a feature can be evidence for or against each individual class.

In 3-way multiclass sentiment classification, for example, we must assign each
document one of the 3 classes +, �, or 0 (neutral). Now a feature related to excla-
mation marks might have a negative weight for 0 documents, and a positive weight
for + or � documents:

Feature Definition w5,+ w5,� w5,0

f5(x)
⇢

1 if “!” 2 doc
0 otherwise 3.5 3.1 �5.3

5.6.2 Learning in Multinomial Logistic Regression
The loss function for multinomial logistic regression generalizes the loss function
for binary logistic regression from 2 to K classes. Recall that that the cross-entropy
loss for binary logistic regression (repeated from Eq. 5.11) is:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.33)
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is. For multinominal logistic regression, by contrast, with separate weights for each
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mation marks might have a negative weight for 0 documents, and a positive weight
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Feature Definition w5,+ w5,� w5,0

f5(x)
⇢

1 if “!” 2 doc
0 otherwise 3.5 3.1 �5.3

5.6.2 Learning in Multinomial Logistic Regression
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distributed according to a Gaussian distribution with mean µ = 0. In a Gaussian
or normal distribution, the further away a value is from the mean, the lower its
probability (scaled by the variance s ). By using a Gaussian prior on the weights, we
are saying that weights prefer to have the value 0. A Gaussian for a weight q j is
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If we multiply each weight by a Gaussian prior on the weight, we are thus maximiz-
ing the following constraint:
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which in log space, with µ = 0, and assuming 2s2 = 1, corresponds to

q̂ = argmax
q
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which is in the same form as Eq. 5.24.

5.6 Multinomial logistic regression

Sometimes we need more than two classes. Perhaps we might want to do 3-way
sentiment classification (positive, negative, or neutral). Or we could be assigning
some of the labels we will introduce in Chapter 8, like the part of speech of a word
(choosing from 10, 30, or even 50 different parts of speech), or the named entity
type of a phrase (choosing from tags like person, location, organization).

In such cases we use multinomial logistic regression, also called softmax re-
multinomial
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regression gression (or, historically, the maxent classifier). In multinomial logistic regression

the target y is a variable that ranges over more than two classes; we want to know
the probability of y being in each potential class c 2C, p(y = c|x).

The multinomial logistic classifier uses a generalization of the sigmoid, called
the softmax function, to compute the probability p(y = c|x). The softmax functionsoftmax
takes a vector z = [z1,z2, ...,zk] of k arbitrary values and maps them to a probability
distribution, with each value in the range (0,1), and all the values summing to 1.
Like the sigmoid, it is an exponential function.

For a vector z of dimensionality k, the softmax is defined as:

softmax(zi) =
exp(zi)Pk
j=1 exp(z j)
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The softmax of an input vector z = [z1,z2, ...,zk] is thus a vector itself:
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Introduction to Deep Learning



Text Classification:  Is this spam?



Who wrote which Federalist 
papers?

§ 1787-8: anonymous essays try to 
convince New York to ratify U.S 
Constitution:  Jay, Madison, 
Hamilton.  

§ Authorship of 12 of the letters in 
dispute

§ 1963: solved by Mosteller and Wallace 
using Bayesian methodsJames Madison Alexander Hamilton



What is the subject of this 
medical article?

§ Antogonists and 
Inhibitors

§ Blood Supply
§ Chemistry
§ Drug Therapy
§ Embryology
§ Epidemiology
§ …

24

MeSH Subject Category Hierarchy

?

MEDLINE Article



Positive or negative movie 
review?

...zany characters and richly applied satire, and 
some great plot twists

It was pathetic. The worst part about it was the 
boxing scenes...

...awesome caramel sauce and sweet toasty 
almonds. I love this place! 

...awful pizza and ridiculously overpriced... 

25
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Positive or negative movie 
review?

...zany characters and richly applied satire, and 
some great plot twists

It was pathetic. The worst part about it was the 
boxing scenes...

...awesome caramel sauce and sweet toasty 
almonds. I love this place! 

...awful pizza and ridiculously overpriced... 
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Text Classification: Definition
§ Input:

§ a document d
§ a fixed set of labels/classes  C = {c1, c2,…, cJ}

§ Output: a predicted class c Î C

Caveats:  In general, an algorithm will return probabilities for all 
document classes: this can be used to find the single best class, or—by 
setting a threshold or a bound on the number of classes—a set of 
classes.  



Classification Methods:  Hand-coded rules

§ Rules based on combinations of words or other features
§ spam: black-list-address OR (“dollars” AND “you have been selected”)

§ Accuracy can be high
§ If rules carefully refined by expert

§ But building and maintaining these rules is expensive



Classification Methods: Supervised ML

§ Input: 
§ a fixed set of classes  C = {c1, c2,…, cJ}
§ a randomly-permuted set of labeled documents 

(d1,c1),....,(dn,cn) split into 
§ a training set (d1,c1),....,(dm,c)   
§ a testing set dm+1,....,dn   (labels withheld)

§ Output: 
§ A classifier γ : d à c  trained the training set

§ The testing set with labels calculated by γ
§ Test results (confusion matrix, metrics, etc.)

29



Classification Methods: Supervised ML

§ There are many different kinds of classifiers for 
labeled data 
§ Naïve Bayes

§ Logistic regression

§ Neural networks


